72 research outputs found

    Intention Detection of Gait Adaptation in Natural Settings

    Get PDF
    Gait adaptation is an important part of gait analysis and its neuronal origin and dynamics has been studied extensively. In neurorehabilitation, it is important as it perturbs neuronal dynamics and allows patients to restore some of their motor function. Exoskeletons and robotics of the lower limbs are increasingly used to facilitate rehabilitation as well as supporting daily function. Their efficiency and safety depends on how well can sense the human intention to move and adapt the gait accordingly. This paper presents a gait adaptation scheme in natural settings. It allows monitoring of subjects in more realistic environment without the requirement of specialized equipment such as treadmill and foot pressure sensors. We extract gait characteristics based on a single RBG camera whereas wireless EEG signals are monitored simultaneously. We demonstrate that the method can not only successfully detect adaptation steps but also detect efficiently whether the subject adjust their pace to higher or lower speed

    Adaptive Riemannian BCI for Enhanced Motor Imagery Training Protocols

    Get PDF
    Traditional methods of training a Brain-Computer Interface (BCI) on motor imagery (MI) data generally involve multiple intensive sessions. The initial sessions produce simple prompts to users, while later sessions additionally provide realtime feedback to users, allowing for human adaptation to take place. However, this protocol only permits the BCI to update between sessions, with little real-time evaluation of how the classifier has improved. To solve this problem, we propose an adaptive BCI training framework which will update the classifier in real time to provide more accurate feedback to the user on 4-class motor imagery data. This framework will require only one session to fully train a BCI to a given subject. Three variations of an adaptive Riemannian BCI were implemented and compared on data from both our own recorded datasets and the commonly used BCI Competition IV Dataset 2a. Results indicate that the fastest and least computationally expensive adaptive BCI was able to correctly classify motor imagery data at a rate 5.8% higher than when using a standard protocol with limited data. In addition it was confirmed that the adaptive BCI automatically improved its performance as more data became available

    Comparison of Brain Networks based on Predictive Models of Connectivity

    Full text link
    In this study we adopt predictive modelling to identify simultaneously commonalities and differences in multi-modal brain networks acquired within subjects. Typically, predictive modelling of functional connectomes from structural connectomes explores commonalities across multimodal imaging data. However, direct application of multivariate approaches such as sparse Canonical Correlation Analysis (sCCA) applies on the vectorised elements of functional connectivity across subjects and it does not guarantee that the predicted models of functional connectivity are Symmetric Positive Matrices (SPD). We suggest an elegant solution based on the transportation of the connectivity matrices on a Riemannian manifold, which notably improves the prediction performance of the model. Randomised lasso is used to alleviate the dependency of the sCCA on the lasso parameters and control the false positive rate. Subsequently, the binomial distribution is exploited to set a threshold statistic that reflects whether a connection is selected or rejected by chance. Finally, we estimate the sCCA loadings based on a de-noising approach that improves the estimation of the coefficients. We validate our approach based on resting-state fMRI and diffusion weighted MRI data. Quantitative validation of the prediction performance shows superior performance, whereas qualitative results of the identification process are promising.Comment: 7 pages, 4 figure

    Towards Explainable, Privacy-Preserved Human-Motion Affect Recognition

    Get PDF
    Human motion characteristics are used to monitor the progression of neurological diseases and mood disorders. Since perceptions of emotions are also interleaved with body posture and movements, emotion recognition from human gait can be used to quantitatively monitor mood changes. Many existing solutions often use shallow machine learning models with raw positional data or manually extracted features to achieve this. However, gait is composed of many highly expressive characteristics that can be used to identify human subjects, and most solutions fail to address this, disregarding the subject's privacy. This work introduces a novel deep neural network architecture to disentangle human emotions and biometrics. In particular, we propose a cross-subject transfer learning technique for training a multi-encoder autoencoder deep neural network to learn disentangled latent representations of human motion features. By disentangling subject biometrics from the gait data, we show that the subject's privacy is preserved while the affect recognition performance outperforms traditional methods. Furthermore, we exploit Guided Grad-CAM to provide global explanations of the model's decision across gait cycles. We evaluate the effectiveness of our method to existing methods at recognizing emotions using both 3D temporal joint signals and manually extracted features. We also show that this data can easily be exploited to expose a subject's identity. Our method shows up to 7% improvement and highlights the joints with the most significant influence across the average gait cycle

    Improving ECG Classification Interpretability Using Saliency Maps

    Get PDF
    Cardiovascular disease is a large worldwide healthcare issue; symptoms often present suddenly with minimal warning. The electrocardiogram (ECG) is a fast, simple and reliable method of evaluating the health of the heart, by measuring electrical activity recorded through electrodes placed on the skin. ECGs often need to be analyzed by a cardiologist, taking time which could be spent on improving patient care and outcomes.Because of this, automatic ECG classification systems using machine learning have been proposed, which can learn complex interactions between ECG features and use this to detect abnormalities. However, algorithms built for this purpose often fail to generalize well to unseen data, reporting initially impressive results which drop dramatically when applied to new environments. Additionally, machine learning algorithms suffer a ‘black-box’ issue, in which it is difficult to determine how a decision has been made. This is vital for applications in healthcare, as clinicians need to be able to verify the process of evaluation in order to trust the algorithm.This paper proposes a method for visualizing model decisions across each class in the MIT-BIH arrhythmia dataset, using adapted saliency maps averaged across complete classes to determine what patterns are being learned. We do this by building two algorithms based on state-of-the-art models. This paper highlights how these maps can be used to find problems in the model which could be affecting generalizability and model performance. Comparing saliency maps across complete classes gives an overall impression of confounding variables or other biases in the model, unlike what would be highlighted when comparing saliency maps on an ECG-by-ECG basis

    Consensus of state of the art mortality prediction models: From all-cause mortality to sudden death prediction

    Full text link
    Worldwide, many millions of people die suddenly and unexpectedly each year, either with or without a prior history of cardiovascular disease. Such events are sparse (once in a lifetime), many victims will not have had prior investigations for cardiac disease and many different definitions of sudden death exist. Accordingly, sudden death is hard to predict. This analysis used NHS Electronic Health Records (EHRs) for people aged ≥\geq50 years living in the Greater Glasgow and Clyde (GG\&C) region in 2010 (n = 380,000) to try to overcome these challenges. We investigated whether medical history, blood tests, prescription of medicines, and hospitalisations might, in combination, predict a heightened risk of sudden death. We compared the performance of models trained to predict either sudden death or all-cause mortality. We built six models for each outcome of interest: three taken from state-of-the-art research (BEHRT, Deepr and Deep Patient), and three of our own creation. We trained these using two different data representations: a language-based representation, and a sparse temporal matrix. We used global interpretability to understand the most important features of each model, and compare how much agreement there was amongst models using Rank Biased Overlap. It is challenging to account for correlated variables without increasing the complexity of the interpretability technique. We overcame this by clustering features into groups and comparing the most important groups for each model. We found the agreement between models to be much higher when accounting for correlated variables. Our analysis emphasises the challenge of predicting sudden death and emphasises the need for better understanding and interpretation of machine learning models applied to healthcare applications

    Controllable Chest X-Ray Report Generation from Longitudinal Representations

    Full text link
    Radiology reports are detailed text descriptions of the content of medical scans. Each report describes the presence/absence and location of relevant clinical findings, commonly including comparison with prior exams of the same patient to describe how they evolved. Radiology reporting is a time-consuming process, and scan results are often subject to delays. One strategy to speed up reporting is to integrate automated reporting systems, however clinical deployment requires high accuracy and interpretability. Previous approaches to automated radiology reporting generally do not provide the prior study as input, precluding comparison which is required for clinical accuracy in some types of scans, and offer only unreliable methods of interpretability. Therefore, leveraging an existing visual input format of anatomical tokens, we introduce two novel aspects: (1) longitudinal representation learning -- we input the prior scan as an additional input, proposing a method to align, concatenate and fuse the current and prior visual information into a joint longitudinal representation which can be provided to the multimodal report generation model; (2) sentence-anatomy dropout -- a training strategy for controllability in which the report generator model is trained to predict only sentences from the original report which correspond to the subset of anatomical regions given as input. We show through in-depth experiments on the MIMIC-CXR dataset how the proposed approach achieves state-of-the-art results while enabling anatomy-wise controllable report generation.Comment: Accepted to the Findings of EMNLP 202

    Optimizing Vision Transformers for Medical Image Segmentation

    Full text link
    For medical image semantic segmentation (MISS), Vision Transformers have emerged as strong alternatives to convolutional neural networks thanks to their inherent ability to capture long-range correlations. However, existing research uses off-the-shelf vision Transformer blocks based on linear projections and feature processing which lack spatial and local context to refine organ boundaries. Furthermore, Transformers do not generalize well on small medical imaging datasets and rely on large-scale pre-training due to limited inductive biases. To address these problems, we demonstrate the design of a compact and accurate Transformer network for MISS, CS-Unet, which introduces convolutions in a multi-stage design for hierarchically enhancing spatial and local modeling ability of Transformers. This is mainly achieved by our well-designed Convolutional Swin Transformer (CST) block which merges convolutions with Multi-Head Self-Attention and Feed-Forward Networks for providing inherent localized spatial context and inductive biases. Experiments demonstrate CS-Unet without pre-training outperforms other counterparts by large margins on multi-organ and cardiac datasets with fewer parameters and achieves state-of-the-art performance. Our code is available at Github
    • …
    corecore